Abstract
Peptide therapeutics plays a prominent role in medical practice. Both peptides and proteins have been used in several disease conditions like diabetes, cancer, bacterial infections etc. The optimization of a peptide library is a time consuming and expensive chore. The tools of computational chemistry offer a way to optimize the properties of peptides. Quantitative Structure Retention (Chromatographic) Relationships (QSRR) is a powerful tool which statistically derives relationships between chromatographic parameters and descriptors that characterize the molecular structure of analytes. In this paper, we show how Comparative Protein ModelingQuantitative Structure Retention Relationship (acronym ComProM-QSRR) can be used to predict the retention time of peptide sequences. This formalism is founded on our earlier published QSAR methodology HomoSAR. ComProM-QSRR can recognize and distinguish the contribution of amino acids at specific positions in the peptide sequences to the retention phenomena through their related physicochemical properties. This study firmly establishes the fact that this approach can be pragmatically used to predict the retention time to all classes of peptides regardless of size or sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.