Abstract

ABSTRACT Synchrotron X-ray imaging has been utilised to detect the dynamic behaviour of molten pools during the metal additive manufacturing (AM) process, where a substantial amount of imaging data is generated. Here, we develop an efficient and robust deep learning model, AM-SegNet, for segmenting and quantifying high-resolution X-ray images and prepare a large-scale database consisting of over 10,000 pixel-labelled images for model training and testing. AM-SegNet incorporates a lightweight convolution block and a customised attention mechanism, capable of performing semantic segmentation with high accuracy (∼96%) and processing speed (< 4 ms per frame). The segmentation results can be used for quantification and multi-modal correlation analysis of critical features (e.g. keyholes and pores). Additionally, the application of AM-SegNet to other advanced manufacturing processes is demonstrated. The proposed method will enable end-users in the manufacturing and imaging domains to accelerate data processing from collection to analytics, and provide insights into the processes’ governing physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call