Abstract

This work proposes a mini-LED driving circuit that adopts the pulse-width modulation (PWM) driving method for use in a liquid-crystal display (LCD) backlight. The proposed circuit can compensate for the threshold voltage ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{V}_{\mathrm{ TH}}$ </tex-math></inline-formula> ) variation in a low-temperature poly-crystalline silicon thin-film transistor (LTPS TFT) and a VSS current-resistance (I-R) rise, to generate a stable driving current to power the mini-LED. Since the proposed circuit uses the PWM method, the mini-LED can be operated at the best luminance-efficacy point, minimizing the power consumption of the circuit. The electrical characteristic of fabricated LTPS TFTs are measured to establish a simulation model to demonstrate the feasibility of the proposed circuit. Simulation results demonstrate that the relative mini-LED current error rates are below 9% when the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\text{V}_{\mathrm{ TH}}$ </tex-math></inline-formula> varies ± 0.3 V and VSS rises by 1 V. With respect to precise control of the gray level, the time shifts of current pulses are within 11.48 us over the whole grayscale. The improvement in the power consumption of the proposed circuit is more than 21% than that of a circuit that is driven by pulse amplitude modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.