Abstract

It has long been recognized that Ca2+ dysregulation is relevant to the initiation of Alzheimer’s disease (AD), and most recent works have suggested that increased cross-talk between endoplasmic reticulum (ER) and mitochondria plays an important role in the pathogenesis of the disease. However, the detailed mechanism involved has not been fully elucidated. Owing to its importance in the regulation of Ca2+ signaling, ER–mitochondrial distance in the neurons is tightly controlled in the physiological conditions. When the distance is decreased, Ca2+ overload occurs both in the cytosol and mitochondria. The cytosolic Ca2+ overload can (1) hyperactivate Ca2+-dependent enzymes, which in turn regulate activities of pro-apoptotic BCL-2 family proteins, causing mitochondrial outer membrane permeabilization and thereby resulting in the release of cytochrome c to activate caspase-3; (2) indirectly activate caspase-3 through the activation of caspase-12; and (3) promote the production and aggregation of β-amyloid. The three pathways eventually trigger neuronal apoptotic cell death. The mitochondrial Ca2+ overload can lead to increased generation of reactive oxygen species, inducing the opening of the mitochondrial permeability transition pore and ultimately causing neuronal apoptotic and necrotic cell death. The resultant death of neurons which are responsible for memory and cognition would contribute to the pathogenesis of AD. Therefore, we propose that the reduction in the distance between ER and mitochondria may be implicated in AD pathology by enhanced Ca2+ signaling, which provides a more complete picture of the Ca2+ hypothesis of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.