Abstract
Enhancing synaptic connections between neurons in the brain's hippocampus that are normally activated during memory formation rescues memory deficits in a mouse model of early Alzheimer's disease. See Letter p.508 The hippocampus plays a crucial role in the encoding, consolidation, and retrieval of episodic memories, which are the first to go missing in the early stages of Alzheimer's disease. This study shows in transgenic mouse models of early Alzheimer's disease that the amnesia is due to a defect in memory retrieval rather than in encoding. Importantly, the 'forgotten' memories can be rescued by direct activation of hippocampal dentate gyrus engram cells, and the amnesia correlates with a progressive reduction of dentate gyrus engram cell spine density. The authors suggest that selective rescue of dentate gyrus engram cells and their spine density may lead to new therapeutic strategies to recoup lost memories in early Alzheimer's disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.