Abstract
It is considered that brain ischemia can be causative connected to Alzheimer’s disease. In the CA1 and CA3 regions of the hippocampus and temporal cortex, genes related to Alzheimer’s disease, such as the amyloid protein precursor (APP), β-secretase (BACE1), presenilin 1 (PSEN1) and 2 (PSEN2), are deregulated by ischemia. The pattern of change in the CA1 area of the hippocampus covers all genes tested, and the changes occur at all post-ischemic times. In contrast, the pattern of gene changes in the CA3 subfield is much less intense, does not occur at all post-ischemic times, and is delayed in time post-ischemia relative to the CA1 field. Conversely, the pattern of gene alterations in the temporal cortex appears immediately after ischemia, and does not occur at all post-ischemic times and does not affect all genes. Evidence therefore suggests that various forms of dysregulation of the APP, BACE1 and PSEN1 and PSEN2 genes are associated with individual neuronal cell responses in the CA1 and CA3 areas of the hippocampus and temporal cortex with reversible cerebral ischemia. Scientific data indicate that an ischemic episode of the brain is a trigger of amyloidogenic processes. From the information provided, it appears that post-ischemic brain injury additionally activates neuronal death in the hippocampus and temporal cortex in an amyloid-dependent manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.