Abstract

Alzheimer’s disease (AD) is a devastating fatal neurodegenerative disease. An alternative to the amyloid cascade hypothesis is that a viral infection is key to the etiology of late-onset AD, with β-amyloid (Aβ) peptides playing a protective role. In the current study, young 5XFAD mice that overexpress mutant human amyloid precursor protein with the Swedish, Florida, and London familial AD mutations were infected with one of two strains of herpes simplex virus 1 (HSV-1), 17syn+ and McKrae, at three different doses. Contrary to previous work, 5XFAD genotype failed to protect mice against HSV-1 infection. The region- and cell-specific tropisms of HSV-1 were not affected by the 5XFAD genotype, indicating that host–pathogen interactions were not altered. Seven- to ten-month-old 5XFAD animals in which extracellular Aβ aggregates were abundant showed slightly better survival rate relative to their wild-type (WT) littermates, although the difference was not statistically significant. In these 5XFAD mice, HSV-1 replication centers were partially excluded from the brain areas with high densities of Aβ aggregates. Aβ aggregates were free of HSV-1 viral particles, and the limited viral invasion to areas with a high density of Aβ aggregates was attributed to phagocytic activity of reactive microglia. In the oldest mice (12–15 months old), the survival rate did not differ between 5XFAD and WT littermates. While the current study questions the antiviral role of Aβ, it neither supports nor refutes the viral etiology hypothesis of late-onset AD.

Highlights

  • Alzheimer’s disease (AD) is a devastating fatal neurodegenerative disease

  • The regionspecific or cell-specific tropisms of herpes simplex virus 1 (HSV-1) strains were not affected by the 5XFAD genotype, when compared with wildtype (WT) littermate controls, suggesting that the host– pathogen interactions were not affected by amyloid precursor protein (APP) overexpression

  • To test whether the lack of viral replication in areas with a high density of Aβ aggregates was due to entrapping of HSV-1 by Aβ aggregates, we examined colocalization of Aβ with HSV1 using coimmunostaining with anti-Aβ antibody H31L21 and antibody to glycoprotein B of HSV-1 viral envelope [anti-gB clone T111] that was used in previous studies to detect association between HSV-1 and Aβ [7]

Read more

Summary

Introduction

Alzheimer’s disease (AD) is a devastating fatal neurodegenerative disease. An alternative to the amyloid cascade hypothesis is that a viral infection is key to the etiology of late-onset AD, with β-amyloid (Aβ) peptides playing a protective role. 7- to 10-month-old 5XFAD animals, in which extracellular Aβ aggregates were abundant, showed a delay and slightly better survival rate relative to WT mice along with partial exclusion of HSV-1 replication from brain areas with high densities of Aβ aggregates.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call