Abstract

The human brain produces new neurons that mediate hippocampal plasticity but also have a potential role in hippocampal-related disorders, such as Alzheimer’s disease and dementia. Factors such as stress and aging that reduce adult neurogenesis also serve as independent risk factors for Alzheimer’s disease. Causality between loss of neurogenesis and hippocampal dysfunction has not been established; however, neurogenesis is an attractive research avenue for therapy since it is readily modifiable. Activities such as running and enrichment increase the proliferation of neural stem cells and survival of nascent neuroblasts. Adult neurogenesis may alternatively reflect capacity to overcome age-dependent insults and neurodegeneration in the hippocampus. This collectively indicates that stimulation of endogenous cells or transplantation of neural stem cells are potential pathways reversing the behavioral changes associated with neurodegenerative disorders by augmenting structural plasticity of the hippocampus. Continued research in this area and in appropriate animal models of disease is critical for evaluating whether neurogenesis-based therapeutic strategies will have the potential to aid those with degenerative conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.