Abstract

The amyloid-beta (Abeta) peptide is neurotoxic and associated with the pathology of Alzheimer's disease (AD). We investigated the effect of Abeta peptides on insulin binding to the insulin receptor because it is known that (1) Abeta and insulin are both amyloidogenic peptides sharing a common sequence recognition motif, (2) Abeta and insulin are substrates for the same insulin degrading enzyme, and (3) impaired glucose metabolism is a characteristic event in the pathology of AD. We discovered that Abeta(1-40) and Abeta(1-42,) the main physiological forms, reduced insulin binding and receptor autophosphorylation. The reduction in binding was caused by a decrease in the affinity of insulin binding to the insulin receptor. This reduction was independent of the receptor concentration. The reverse, control peptide Abeta(40-1) did not reduce insulin binding or insulin receptor autophosphorylation. These results demonstrate that Abeta is a direct competitive inhibitor of insulin binding and action. We speculate that the increased levels of Abeta in Alzheimer's disease may be linked to the associated insulin resistance that has been observed previously in this disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.