Abstract

Mutations in two related genes, presenilin 1 and 2, account for most early-onset familial Alzheimer's disease. Although structural features indicate that the presenilins are membrane proteins, their function(s) is unknown. We have localized the presenilins to the nuclear membrane, its associated interphase kinetochores, and the centrosomes—all subcellular structures involved in cell cycle regulation and mitosis. The colocalization of the presenilins with kinetochores on the nucleoplasmic surface of the inner nuclear membrane, together with other results, suggests that they may play a role in chromosome organization and segregation, perhaps as kinetochore binding proteins/ receptors. We discuss a pathogenic pathway for familial Alzheimer's disease in which defective presenilin function causes chromosome missegregation during mitosis, resulting in apoptosis and/or trisomy 21 mosaicism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.