Abstract

The most widely accepted hypothesis to explain the pathogenesis of Alzheimer disease (AD) is the amyloid cascade, in which the accumulation of extraneuritic plaques and intracellular tangles plays a key role in driving the course and progression of the disease. However, there are other biochemical and morphological features of AD, including altered calcium, phospholipid, and cholesterol metabolism and altered mitochondrial dynamics and function that often appear early in the course of the disease, prior to plaque and tangle accumulation. Interestingly, these other functions are associated with a subdomain of the endoplasmic reticulum (ER) called mitochondria-associated ER membranes (MAM). MAM, which is an intracellular lipid raft-like domain, is closely apposed to mitochondria, both physically and biochemically. These MAM-localized functions are, in fact, increased significantly in various cellular and animal models of AD and in cells from AD patients, which could help explain the biochemical and morphological alterations seen in the disease. Based on these and other observations, a strong argument can be made that increased ER-mitochondria connectivity and increased MAM function are fundamental to AD pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.