Abstract

Alveolar macrophages (AMphi) have been implicated in the polymorphonuclear leukocyte (PMN) recruitment to the lungs during sepsis. Using an in vivo murine model of sepsis (feces in the peritoneum), we show that peritonitis leads to increased activation of AMphi and PMN migration into pulmonary alveoli. To assess cellular mechanisms, an in vitro construct of the pulmonary vascular-interstitial interface (murine AMphi, pulmonary endothelial cells, and PMN) and a chimera approach were used. Using immunologic (Abs) and genetic blockade (CXCR2-deficient AMphi), we show that CXC chemokines in septic plasma are responsible for the activation of AMphi. The activated AMphi can promote PMN transendothelial migration, even against a concentration gradient of septic plasma, by generating platelet-activating factor and H(2)O(2). Platelet-activating factor/H(2)O(2) induce an oxidant stress in the adjacent endothelial cells, an event that appears to be a prerequisite for PMN transendothelial migration, since PMN migration is abrogated across Cu/Zn-superoxide dismutase overexpressing endothelial cells. Using gp91-deficient endothelial cells, we show that NADPH oxidase plays an important role in the AMphi-induced PMN transendothelial migration. Pharmacologic/small interfering RNA blockade of Src kinase inhibits AMphi-induced endothelial NADPH oxidase activation and PMN migration. Collectively, our findings indicate that the PMN transendothelial migration induced by septic AMphi is dependent on the generation of superoxide in endothelial cells via the Src kinase/NADPH oxidase signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.