Abstract

Because the alveolar macrophage (AM) phenotype of horses with severe equine asthma (SEA) is unknown, the cytokines expressed by M1- and M2-polarized AM were determined and the hypothesis that natural hay/straw challenge (NC) induces divergent AM phenotypes in control horses and horses with SEA was tested. Macrophages from control horses were activated either with eIFNγ + lipolysaccharide (LPS) or eIL-4 to characterize M1- or M2-polarized AM gene expression, respectively and determine the response of polarized cells to pathogen-associated molecular patterns (PAMPS): LPS, zymosan, peptidoglycan and hay dust. Subsequently, gene expression was explored in AM of control horses and horses with SEA at pasture and after NC.M1 polarization increased expression of pro-inflammatory cytokines (TNFα, IL-8, IL-12p40), IL-10, and CD80. M2 polarization increased CD206 and down-regulated arginase-II and IL-10. Expression of pro-inflammatory cytokines and CD80 in response to PAMPS was further increased by M1 pre-polarization whereas M2 pre-polarization down-regulated expression of pro-inflammatory cytokines and IL-10 but increased CD206. In horses with SEA, AMs had elevated expression of IL-10 both at pasture and after NC, but only after NC in control horses. CD206 expression increased in both groups during NC. At pasture, stimulation by PAMPS augmented expression of IL-8 and IL-10 in horses with SEA compared to control horses. NC eliminated this difference by selectively increasing expression of IL-10 in control horses. A fundamental shift in the macrophage phenotype in SEA is supported by consistently elevated production of IL-10. A similar non-canonical phenotype develops temporarily in control horses upon NC suggesting that AMs in horses with SEA have lost the ability to respond dynamically to environmental cues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call