Abstract
The acute respiratory distress syndrome (ARDS) is a major cause of morbidity after injury. We hypothesized that alveolar macrophage (AMPhi) chemokine and cytokine release after hemorrhage and sepsis is regulated by NF-kappaB and MAPK. Adult male rats underwent soft tissue trauma and hemorrhagic shock (~90 min) followed by crystalloid resuscitation. Sepsis was induced by cecal ligation and puncture (CLP) 20 h after resuscitation. AMPhi were harvested, and TNF-alpha, IL-6, and macrophage inflammatory protein (MIP)-2 release and serum IL-6 and TNF-alpha levels were measured at 5 h after HCLP. Lung tissues were analyzed for activation of NF-kappaB, myeloperoxidase activity, and wet/dry weight ratio. In control animals, AMPhi were stimulated with LPS with or without inhibitors of NF-kappaB and MAPK. Serum TNF-alpha and IL-6 levels and spontaneous AMPhi TNF-alpha and MIP-2 release were elevated (P < 0.05) after HCLP, concomitantly with the development of lung edema and leukocyte activation. Activation of NF-kappaB increased in lungs from the hemorrhage and CLP group compared with shams. Inhibition of NF-kappaB or the upstream MAPK significantly decreased LPS-stimulated AMPhi activation. Because enhanced release of inflammatory mediators by AMPhi may contribute to ARDS after severe trauma, inhibition of intracellular signaling pathways represents a target to attenuate organ injury under those conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Lung Cellular and Molecular Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.