Abstract
The low-temperature electron microscope, which preserves aqueous structures as solid water at liquid nitrogen temperature, was used to image the alveolar lining layer, including surfactant and its aqueous subphase, of air-filled lungs frozen in anesthetized rats at 15-cmH2O transpulmonary pressure. Lining layer thickness was measured on cross fractures of walls of the outermost subpleural alveoli that could be solidified with metal mirror cryofixation at rates sufficient to limit ice crystal growth to 10 nm and prevent appreciable water movement. The thickness of the liquid layer averaged 0.14 micron over relatively flat portions of the alveolar walls, 0.89 micron at the alveolar wall junctions, and 0.09 micron over the protruding features (9 rats, 20 walls, 16 junctions, and 146 areas), for an area-weighted average thickness of 0.2 micron. The alveolar lining layer appears continuous, submerging epithelial cell microvilli and intercellular junctional ridges; varies from a few nanometers to several micrometers in thickness, and serves to smooth the alveolar air-liquid interface in lungs inflated to zone 1 or 2 conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.