Abstract

RationaleA widely applicable model of emphysema that allows efficient and sensitive quantification of injury is needed to compare potential therapies.ObjectivesTo establish such a model, we studied the relationship between elastase dose and the severity of emphysema in female C57BL/6J mice. We compared alveolar fractal box dimension (DB), a new measure which is an assessment of the complexity of the tissue, with mean linear intercept (Lm), which is commonly used to estimate airspace size, for sensitivity and efficiency of measurement.MethodsEmphysema was induced in female C57BL/6J mice by administering increasing intratracheal doses of porcine pancreatic elastase (PPE). Changes in morphology and static lung compliance (CL) were examined 21 days later. Correlation of DB with Lm was determined in histological sections of lungs exposed to PPE. The inverse relationship between DB and Lm was supported by examining similar morphological sections from another experiment where the development of emphysema was studied 1 to 3 weeks after instillation of human neutrophil elastase (HNE).ResultsLm increased with PPE dose in a sigmoidal curve. CL increased after 80 or 120 U/kg body weight (P < 0.05), but not after 40 U/kg, compared with the control. DB progressively declined from 1.66 ± 0.002 (standard error of the mean) in controls, to 1.47 ± 0.006 after 120 U PPE/kg (P < 0.0001). After PPE or HNE instillation, DB was inversely related to Lm (R = −0.95, P < 0.0001 and R = −0.84, P = 0.01, respectively), with a more negative slope of the relationship using HNE (P < 0.0001).ConclusionIntratracheal instillation of increasing doses of PPE yields a scale of progression from mild to severe emphysema. DB correlates inversely with Lm after instillation of either PPE or HNE and yields a rapid, sensitive measure of emphysema after elastase instillation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.