Abstract

While laser-printed metals do not tend to match the mechanical properties and thermal stability of conventionally-processed metals, incorporating and dispersing nanoparticles in them should enhance their performance. However, this remains difficult to do during laser additive manufacturing. Here, we show that aluminum reinforced by nanoparticles can be deposited layer-by-layer via laser melting of nanocomposite powders, which enhance the laser absorption by almost one order of magnitude compared to pure aluminum powders. The laser printed nanocomposite delivers a yield strength of up to 1000 MPa, plasticity over 10%, and Young’s modulus of approximately 200 GPa, offering one of the highest specific Young’s modulus and specific yield strengths among structural metals, as well as an improved specific strength and thermal stability up to 400 °C compared to other aluminum-based materials. The improved performance is attributed to a high density of well-dispersed nanoparticles, strong interfacial bonding between nanoparticles and Al matrix, and ultrafine grain sizes.

Highlights

  • While laser-printed metals do not tend to match the mechanical properties and thermal stability of conventionally-processed metals, incorporating and dispersing nanoparticles in them should enhance their performance

  • We conducted the experiment at 820 °C, at which the TiC is chemical stable with Al17 and the wetting angle of TiC/Al is less than 70°18, using ultrasonic processing (See Fabrication of aluminum matrix nanocomposites (AMNCs) powders in Methods)

  • It could be attributed to the multiple reflection and absorption that is inherent to the porous structure of the powder bed and the fact that the concentration of TiC nanoparticles on the nanocomposite powder surface is significantly higher than overall concentration

Read more

Summary

Introduction

While laser-printed metals do not tend to match the mechanical properties and thermal stability of conventionally-processed metals, incorporating and dispersing nanoparticles in them should enhance their performance. To reveal the interior microstructure, the polished AMNC specimen was tilted 52° to acquire cross-sectional images (See Microstructure characterization in Methods), as shown in Fig. 2b and Fig. 2c, indicating that a high volume fraction of TiC nanoparticles was dispersed and distributed homogeneously throughout the Al matrix.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call