Abstract

Scenario-finding tools such as Alloy are widely used to understand the consequences of specifications, with applications to software modeling, security analysis, and verification. This paper focuses on the exploration of scenarios: which scenarios are presented first, and how to traverse them in a well-defined way. We present Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios and backtracking. It also provides the ability to find what can consistently be used to extend each scenario. We describe the semantic basis of Aluminum in terms of minimal models of first-order logic formulas. We show how this theory can be implemented atop existing SAT-solvers and quantify both the benefits of minimality and its small computational overhead. Finally, we offer some qualitative observations about scenario exploration in Aluminum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.