Abstract

Problem statement: One of the most power consuming sector in the industry is the liquid transportation through pipelines due to the turbulent mode the liquids are transported with. Drag reducing agents were used as a solution for the pumping power losses in pipelines. One of the inportant drag reducing agents suggested to improve the flow in pipelines are the suspended powders. Approach: In the present study, aluminum powders and zwitrionic surfactant ((3-(Decyldimethyleammonio) propanesulfonate inner salt and 3-(n-n Dimethylpalmityl-ammonio propanesulfonate) were investigated as drag reducing agent in aqueous media. The effect of additive concentration, Reynolds number and the testing section length are the main variables investigated. All the experimental work was carried in a build up experimental rig that consist of a closed loop experimental piping system. Results: The experimental results showed that, the percentage drag reduction Dr (%) increases by increasing the additive concentration and Reynolds number with maximum percentage drag reduction up to 50% with only 500 ppm addition concentration. Conclusion: The effect of testing section length was not so clear due to the way of introducing the additive to the main flow, that the additive is mixed in the main tank and not injected.

Highlights

  • One of the major problems facing the modern industrial development is the power resources

  • Friction factor: One of the main representations for the experimental work of drag reduction and the pumping power savings occurred during the experiments is the friction factor effect with the percentage drag reduction in each experiment

  • Effect of Reynolds number on the percentage drag reduction: Figure 5-8, shows the effect of fluid velocity on the Dr (%). the fluid velocity is represented by Reynolds number (Re)

Read more

Summary

Introduction

One of the major problems facing the modern industrial development is the power resources. From the economical point of view; pumping power losses during the flow of transported liquids in pipelines are one of the major problems facing many industrial applications (especially petroleum). The resistance that the fluid faces during its flow in pipeline is called “Drag”. This resistance force is parallel to the direction of fluid flowing over a solid surface. Drag force may be expressed by two components: “Skin friction component” which is equal to the stream wise component of all shearing stresses over the surface and “pressure drag component” which is equal to the stream wise component of all normal stresses.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.