Abstract

Aluminum particles ranging from 2 to 100 μm were subjected to the flow of detonation products of a stoichiometric mixture of hydrogen and oxygen at atmospheric pressure. Luminosity emitted from the reacting particles was used to determine the reaction delay and duration. The reaction duration was found to increase as d n with n ≈ 0.5, which is more consistent with kinetically controlled reaction rather than the classical diffusion-controlled regime. Emission spectroscopy was used to estimate the combustion temperature, which was found to be well below the flow temperature. This fact also suggests combustion in the kinetic regime. Finally, the flow field was modeled with a CFD code, and the results were used to model analytically the behavior of the aluminum particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call