Abstract

Bacterial vaccines have been widely used to prevent infectious diseases, especially in veterinary medicine. Although there are many reports on bacterin adjuvants, only a few contain innovations in bacterin adjuvants. Taking this into consideration, in this study we designed and synthesized a new aluminum (oxy) hydroxide (AlOOH) nanorod (Al-NR) with a diameter of 200 ± 80 nm and a length of 1.1 ± 0.6 μm. Using whole- Pseudomonas aeruginosa PAO1 as antigens, we showed that the bacterial antigens of P. aeruginosa PAO1 adsorbed on the Al-NRs induced a quick and stronger antigen-specific antibody response than those of the other control groups, especially in the early stage of immunization. Furthermore, the level of antigen-specific IgG was approximately 4-fold higher than that of the no adjuvant group and 2.5-fold higher than those of other adjuvant groups in the first week after the initial immunization. The potent adjuvant activity of the Al-NRs was attributed to the rapid presentation of antigen adsorbed on them by APCs. Additionally, Al-NRs induced a milder local inflammation than the other adjuvants. In short, we confirmed that Al-NRs, enhancing both humoral and cellular immune responses, are a potentially promising vaccine adjuvant delivery system for inhibiting the whole- Pseudomonas aeruginosa infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.