Abstract

Solid solutions of aluminum nitride (AlN) and silicon carbide (SiC) have been grown at 900–1300 °C on vicinal α (6H)-SiC(0001) substrates by plasma-assisted, gas-source molecular beam epitaxy. Under specific processing conditions, films of (AlN)x(SiC) 1−x with 0.2 ≤ x ≤ 0.8, as determined by Auger electron spectrometry (AES), were deposited. Reflection high-energy electron diffraction (RHEED) was used to determine the crystalline quality, surface character, and epilayer polytype. Analysis of the resulting surfaces was also performed by scanning electron microscopy (SEM). High-resolution transmission electron microscopy (HRTEM) revealed that monocrystalline films with x ≥ 0.25 had the wurtzite (2H) crystal structure; however, films with x < 0.25 had the zincblende (3C) crystal structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.