Abstract

Since its discovery in the 1970s, surface-enhanced Raman scattering (SERS) has been primarily associated with substrates composed of nanostructured noble metals. Here we investigate chemically synthesized nanocrystal aggregates of aluminum, an inexpensive, highly abundant, and sustainable metal, as SERS substrates. Al nanocrystal aggregates are capable of substantial near-infrared SERS enhancements, similar to Au nanoparticles. The intrinsic nanoscale surface oxide of Al nanocrystals supports molecule-substrate interactions that differ dramatically from noble metal substrates. The preferential affinity of the single-stranded DNA (ssDNA) phosphate backbone for the Al oxide surface preserves both the spectral features and nucleic acid cross sections relative to conventional Raman spectroscopy, enabling quantitative ssDNA detection and analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call