Abstract

Polymethylsiloxane (PMS) was used as a binder to make self-supporting SiC preforms for pressurized aluminum melt infiltration. The SiC particles were coated with preceramic polymer by spray drying; this ensured a fine and homogeneous distribution coupled with a high yield of the binder. The conditioned SiC powder mixtures were processed into preforms by warm pressing, curing and pyrolysis. A polymer content of 1.25 wt.% conferred sufficient stability to the preforms to enable composite processing. Using this procedure, SiC preforms with various SiC particle size distributions were prepared. The resulting Al/SiC composites with SiC contents of about 60 vol.% obtained by squeeze casting infiltration exhibit a 4-point bending strength of ∼500 MPa and Young’s moduli of ∼200 GPa. These values are comparable to those of compositionally identical, but binder-free composites. It is thus shown that the PMS-derived binder confers the desired strength to the SiC preforms without impairing the mechanical properties of the resulting Al/SiC composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.