Abstract

IntroductionAluminum is everywhere in nature and is a recognized neurotoxicant closely associated with various neurodegenerative diseases. Neuroinflammation occurs in the early stage of neurodegenerative diseases, but the underlying mechanism by which aluminum induces neuroinflammation remains unclear. Material and methodsA 3-month subchronic aluminum exposure mouse model was established by drinking water containing aluminum chloride (AlCl3). Microglia BV2 cells and hippocampal neuron HT22 cells were treated with AlCl3 in vitro. BBG and YC-1 were used as intervention agents. ResultsAluminum could activate microglia and increase the level of extracellular ATP, stimulate P2X7 receptor, HIF-1α, activate NLRP3 inflammasome and CASP-1, release more cytokine IL-1β, and induce an inflammatory response in nerve cells. There was a mutual regulatory relationship between P2X7 and HIF-1α at mRNA and protein levels. The co-culture system of BV2-HT22 cells observed that conditioned medium from microglia treated with aluminum could aggravate neuronal morphological damage, inflammatory response and death. While BBG and YC-1 intervention could rescue these injuries to some extent. ConclusionThe P2X7‐NLRP3 pathway was involved in aluminum-induced neuroinflammation and injury. P2X7 and HIF-1α might mutually regulate and promote the progression of neuroinflammation, both BBG and YC-1 could relieve it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call