Abstract

Water samples were collected from the Yalujiang estuary in both flood periods (August 1992 and August 1994) and dry season (May 1996) and were analyzed for aluminum (Al). Al behaves non-conservatively in the Yalujiang estuary, and a significant loss (70–80%) in dissolved concentration is observed in the upper estuary, in spite of seasonal variation in water discharge and sediment load. About 0.4×106, tons of Al is annually transported from Yalujiang to the estuary, of which the particulate pool clearly dominates. The particulate Al flux through the Yalujiang contributes 35% of the total Al input from Chinese rivers to the Yellow Sea. The data sets from size fractionation and C-18 SPE separation demonstrate that a large fraction of dissolved Al is in colloidal (≈50%) and organically complex (≈60%) forms in the Yalujiang. The observed scavenging from solution to particulate pools in the estuary is most likely through the flocculation of colloidal and organic-complexed Al, which results in a considerable change in dissolved-particulate partitioning, shown by laboratory mixing experiments. Exchange between dissolved and particulate phases is examined by analysis of Kd, the distribution coefficient. The empirical relationship of Kd with chlorinity and suspended matter concentrations was investigated with field observations and model simulations. The model indicated that Kd values of Al are inversely related to the amount of total suspended matter, but Kd-chlorinity plots show different features between dry and flood seasons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call