Abstract

The Advanced Pore Morphology (APM) process, a new method for production of aluminum foam-polymer hybrid materials, is described. Small volume aluminum foam spheres are produced first and then adhesively joined in a separate process step to realize an APM foam part. Detailed information on mechanical properties of this new hybrid material is given. Results of uniaxial and hydrostatic compression tests are summarized and evaluated to show how typical parameters characterizing material and process such as spatial arrangement, size and density of the foam elements influence the global properties. Two levels of the hierarchical architecture of the material are evaluated—namely the individual foam spheres and the hybrid structure. Variation of adhesives and adhesive coating thickness used in bonding the spheres in conjunction with study of unbonded specimens provides additional insight in the influence of this bond. First estimates on density dependence of mechanical properties are derived from the experimental data. Distinctive differences between APM and conventional aluminum foams are qualitatively explained. Throughout the study, AlSi7 aluminum foam produced from chemically identical precursor material according to the powder metallurgical FOAMINAL ® process is included as reference material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.