Abstract

Metal foams are an interesting class of materials with very low specific weight and unusual physical, mechanical and acoustic properties due to the porous structure. In recent years several manufacturing techniques were developed. The limit of these techniques is that it is difficult, even if impossible, to manufacture precursors and then foams able to reinforce complex shaped components; this drawback, to date, limits the application of metal foams. This proof of concept paper is focused on the study of an innovative manufacturing technique able to produce complex shaped precursors. The key idea is to spray a powder mixture (made of both aluminum alloy powders as metal matrix and titanium hydride particles as foaming agent) through the cold gas dynamic spray on a free shape metallic substrate and then carry out the foaming process. A preliminary granulometric analysis was carried out to estimate the particles mean size and then sound assisted (140dB–80Hz) fluidization process was used to achieve a homogenous and deep mixing between the fine metal powders and the blowing agent ones. In particular, two different types of mixtures with 1wt% and 2.5wt% of TiH2 were investigated; moreover, air compressed as well as helium were used as CGDS carrier gas in order to ensure a higher impact velocity and a better compacting of the powders. Finally, the cross sections of manufactured solid foams were observed by means of a SEM microscope for having information about internal metallurgical phenomena as well as the distribution and morphology of foam cells. Macrographs of created porous structures showed the effectiveness of the developed innovative manufacturing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.