Abstract

We report on weekly aluminum (Al) concentration measurements in soil water from forested catchments monitored throughout Norway since 1986. Originating in acidification research, and thus accompanied by many other chemical variables, they constitute a comprehensive data set suited for analysis of short- as well as long-term variations in a geographic perspective. The Al time series at 21 sites are characterized by high temporal variability, seasonal behavior, and episodic events with peak values in the range 200–800 μmol/l, mostly caused by sea salts blown inland in storms, with a subsequent release of Al after cation exchange. Despite a clear south–north gradient in possible acidification over Norway, we found no indication of such south–north trends in Al chemistry, neither in mean values, maximum values, nor time trends. We identified two main drivers for variation in Al concentrations. The first one was sea salts, where Al was released to the soil solution after cation exchange. The second driver was high production of DOC, where Al was driven into the soil solution by complexation with DOC. There appears to be little risk for aluminum toxicity to trees in Norwegian forests. Except during occasional episodes, aluminum concentrations generally lay far below the supposed threshold values for toxic effects on Norway spruce, Scots pine and birch. Much dissolved aluminum was non-labile, and thus relatively non-toxic. Although the Ca 2+ / labile Al ratio was often below 1.0, considerable doubt exists as to the applicability of this variable in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.