Abstract

Thin films of evaporated aluminum form a convenient model system for studying corrosion and corrosion inhibition on aluminum because (1) corrosion can be conveniently and continuously monitored by both electrical resistance measurements and optical transmission, (2) surface coverage of inhibitor species can be measured by either radiotracer techniques or tunneling spectroscopy and (3) the nature of surface adsorbed species can be determined with tunneling spectroscopy. The corrosion rate for these films is of order 20 μm/year in pure water at flow rates of order 20 cm/s. The corrosion is inhibited by roughly one order of magnitude by monolayer surface coverages of the surface species that result when acetic acid, benzoic acid, cupferron or ethylene glycol are added to the water. At surface coverages of order 1/100 of a monolayer, the corrosion rate is increased by roughly an order of magnitude for the first three additives but not for ethylene glycol. From the previous studies of tunneling spectra, it is clear that the acetic and benzoic acids lose a proton to become benzoate and acetate ions on the surface. The ethylene glycol loses the protons from both of its OH groups during bonding. The spectrum of the adsorbed cupferron species is presented but not analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.