Abstract

A series of Schiff base bridged bis(indolyl) ligands were developed for aluminum chemistry. The reactions of AlEt3 or AlMe3 with the Schiff base bridged bis(indolyl) proligands R1(-N[double bond, length as m-dash]CHC8H5NH)2 (R1 = -CH2CH2- (H2L1); -CH2CH2CH2- (H2L2); -CH2CMe2CH2- (H2L3); rac-Cy (H2L4); and R,R-Cy (H2L5)) were studied leading to the synthesis of a series of aluminum alkyl complexes L1AlEt (1)-L5AlEt (5) and L3AlMe (3b) in good yields, while the reaction of H2L3 with Al(OiPr)3 gave the aluminum alkoxide complex L3AlOiPr (3a). These aluminum complexes were characterized by spectroscopic methods and elemental analyses. The solid state structures of the aluminum complexes 1-5 and 3a were confirmed by the X-ray diffraction study. X-ray analyses revealed that the aluminum centre in these complexes is five-coordinated. The coordination geometry is between square pyramidal and trigonal bipyramidal. In the presence of 1 equiv. of isopropanol, the aluminum alkyl complexes exhibited notable activity towards the ring-opening polymerization of rac-lactide at 70 °C in toluene, with good control over molecular weights and dispersities. The substituents and the length of the bridging part between the two Schiff base nitrogen atoms have an influence on either the tacticity of isolated polymers or the rate of polymerization. The kinetics of complex L3AlOiPr (3a) in C6D6 was also investigated, and the experimental results revealed that the rate of polymerization was first-order with respect to rac-lactide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.