Abstract

Aiming its analysis at the poor hardness and wear-resistance of E690 high-strength steel, and the high hardness and good wear-resistance of AlCrN-coated, combined with the laser impact micro-modeling which can store oil lubrication, this paper carries out research on the synergistic wear reduction mechanism of laser impact micro-modeling AlCrN coated on the surface of E690 high-strength steel. Multi-arc ion plating technology is used to prepare the AlCrN coating on the laser-impact micro-modeling specimen; the micro-modeling AlCrN-coated specimen is subjected to a reciprocating friction test, and the hardness and residual stress of the coated surface are measured by equipment such as a residual stress meter and a microhardness tester. The microstructure and physical elements of the surface wear before and after the preparation of the coating are analyzed by scanning electron microscope (SEM), confocal three-dimensional morphometer and XRD diffractometer, respectively. The results show that the prepared AlCrN-coated materials were well-bonded to the substrate. Compared with the micro-molding-only specimens, the average friction coefficient and wear amount of the micro-molded AlCrN-coated specimens with different micro-molding densities and depths decreased compared with the micro-molded specimens; among them, the average friction coefficient of the specimens with a micro-molding density of 19.6% and a depth of 7.82 µm was 0.0936, which was the lowest. Additionally, the AlCrN coating enhances the stability of the friction process of the specimen and reduces the amount of wear of the specimen. Under the premise of ensuring the anti-wear and stability properties of the material, the best integrated friction performance was achieved at a micro-molding density of 19.6% and a depth of 24.72 µm. A synergistic wear reduction and lubrication model of micro-molding and AlCrN-coating was established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call