Abstract

Varietal differences in net nutrient uptake rate and transport efficiency in the presence of aluminium have seldom been investigated in rice. Therefore, effects of Al on growth, uptake and transport of macronutrients (K, P, Ca, and Mg) and micronutrients (Fe, Zn, Cu, and Mn) were evaluated in 3 rice cultivars (BG35, DA14 and IR45) with different Al sensitivity. The plants were grown in nutrient solution at pH 4.1. An initial growth was completed in the time interval 1 to 5 days immediately before the addition of Al. The final growth period with Al (0, 140, 280 or 560 μM) was completed on day 26. With Al, a comparatively high P accumulation occurred in shoots and roots of the Al tolerant cultivar BG35. In contrast, the Al sensitive cultivar IR45 maintained a relatively high Ca accumulation during the Al treatment. A reduced total net uptake rate of P and Ca by IR45 in the time period 5 to 26 days was due to both a reduced root fresh weight and a reduced net uptake rate per g fresh weight of root. Moreover, net Ca transport to the shoots higher than net uptake rate in DA14 and IR45 at > 140 μM Al during the test period suggests restricted Ca uptake by the roots in combination with a continuous net loss of Ca from the roots to the shoots as time proceeds. In the case of Mg and Mn, there was a general reduction of net uptake rates, irrespective of Al sensitivity of cultivars. With Al treatment, comparatively high accumulation of Fe, Zn and Cu occurred in the roots of IR45, concomitant with a high net Zn and Cu uptake rate. It is concluded that differences in Al sensitivity among rice cultivars BG35, DA14 and IR45 are not primarily linked to the depressed internal Mg or Mn status of the plants but rather to changes in the uptake and distribution of Ca and P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call