Abstract

Understanding of the crystal chemistry of the Earth's deep mantle has evolved rapidly recently with the gradual acceptance of the importance of the effect of minor elements such as aluminium on the properties of major phases such as perovskite. In the early Earth, during its formation and segregation into rocky mantle and iron-rich core, it is likely that silicate liquids played a large part in the transport of volatiles to or from the deep interior. The importance of aluminium on solubility mechanisms at high pressure has so far received little attention, even though aluminium has long been recognized as exerting strong control on liquid structures at ambient conditions. Here we present constraints on the solubility of argon in aluminosilicate melt compositions up to 25 GPa and 3,000 K, using a laser-heated diamond-anvil cell. The argon contents reach a maximum that persists to pressures as high as 17 GPa (up to 500 km deep in an early magma ocean), well above that expected on the basis of Al-free melt experiments. A distinct drop in argon solubility observed over a narrow pressure range correlates well with the expected void loss in the melt structure predicted by recent molecular dynamics simulations. These results provide a process for noble gas sequestration in the mantle at various depths in a cooling magma ocean. The concept of shallow partial melting as a unique process for extracting noble gases from the early Earth, thereby defining the initial atmospheric abundance, may therefore be oversimplified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call