Abstract

Terminal aluminium and gallium imides of the type K[(NON)M(NR)], bearing heteroatom substituents at R, have been synthesised via reactions of anionic aluminium(I) and gallium(I) reagents with silyl and boryl azides (NON=4,5-bis(2,6-diisopropyl-anilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene). These systems vary significantly in their lability in solution: the N(Sii Pr3 ) and N(Boryl) complexes are very labile, on account of the high basicity at nitrogen. Phenylsilylimido derivatives provide greater stabilization through the π-acceptor capabilities of the SiR3 group. K[(NON)AlN(Sit BuPh2 )] offers a workable compromise between stability and solubility, and has been completely characterized by spectroscopic, analytical and crystallographic methods. The silylimide species examined feature minimal π-bonding between the imide ligand and aluminium/gallium, with the HOMO and HOMO-1 orbitals effectively comprising orthogonal lone pairs centred at N. Reactivity-wise, both aluminium and gallium silylimides can act as viable sources of nitride, [N]3- , with systems derived from either metal reacting with CO to afford cyanide complexes. By contrast, only the gallium system K[(NON)Ga{N(SiPh3 )}] is capable of effecting a similar transformation with N2 O to yield azide, N3 - , via formal oxide/nitride metathesis. The aluminium systems instead generate RN3 via transfer of the imide fragment [RN]2- .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.