Abstract

The salt metathesis reaction of dipotassium germacyclopentadienediide with aluminum(III) dichlorides provides either half-sandwich alumole complexes of germanium(II) or aluminylene germole complexes. Their molecular structure and the delocalized bonding situation, revealed by density functional theory (DFT) calculations, are equally described as isomeric aluminagerma[5]pyramidanes with either the germanium or the aluminum atom in the apical position of the pentagonal pyramid. The product formation and the selectivity of the reaction depends on the third substituent of the aluminum dichloride. Aryl-substituents favor the formation of alumole complexes and Cp*-substituents that of the isomeric germole complexes. With amino-substituents at the aluminum atom mixtures of both isomers are formed and the positional exchange of the two heteroatoms is shown by NMR spectroscopy. The alumole complexes of germanium(II) undergo facile reductive elimination of germanium and form the corresponding alumoles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call