Abstract
The carbon oxidation activity and sensing performance of an alumina substrate-supported sensor comprised of Sn 0.9In 0.1P 2O 7 as a proton conductor and Pt as an electrocatalyst were investigated. Electrochemically formed active oxygen species exhibited high activity for carbon oxidation, where the current efficiency was estimated from the four-electron reaction (C + 2H 2O → CO 2 + 4H + + 4e −) and reached approximately 90%. An operating temperature of 225 °C was found to be the most effective to achieve the highest possible electrochemical carbon oxidation and the lowest possible non-electrochemical carbon oxidation. When carbon introduced to the Sn 0.9In 0.1P 2O 7–Pt interface was oxidized by active oxygen, a large potential jump was observed due to a significant increase in the polarization resistance, which was strongly dependent on the carbon content in the working electrode. Two types of carbon sensors, amperometric and potentiometric, were tested in a feed mixture of 3 vol% water vapor and 10 vol% O 2. In the case of the amperometric sensor, the current increased linearly with increasing carbon content, which enabled the determination of a wide range of carbon content from the current signal. In the case of the potentiometric sensor, a threshold quantity of carbon could be recognized by selection of the current and subsequent monitoring of the sudden potential increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.