Abstract

Alumina ceramic is an ideal candidate for armor protection, but it is limited by the difficult molding or machining process. Three-dimensional printing imparts a superior geometric flexibility and shows good potential in the preparation of ceramics for armor protection. In this work, alumina ceramics were manufactured via 3D printing, and the effects of different monomers on the photosensitive slurry and sintered ceramics were investigated. The photosensitive slurries using dipropylene glycol diacrylate (DPGDA) as a monomer displayed the optimal curing performance, with a low viscosity, small volume shrinkage and low critical exposure energy, and each of the above properties was conducive to a good curing performance in 3D printing, making it a suitable formula for 3D-printed ceramic materials. In the 3D-printed ceramics with DPGDA as a monomer, a dense and uniform microstructure was exhibited after sintering. In comparison, the sample with trimethylolpropane triacrylate (TMPTA) showed an anisotropic microstructure with interlayer gaps and a porosity of about 9.8%. Attributed to the dense uniform microstructure, the sample with DPGDA exhibited superior properties, including a relative density of 97.5 ± 0.5%, a Vickers hardness of 19.4 ± 0.8 GPa, a fracture toughness of 2.6 ± 0.27 MPa·m1/2, a bending strength of 690 ± 54 MPa, and a dynamic strength of 3.7 ± 0.6 GPa at a strain rate of 1200 s−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call