Abstract

Graphene-coated SiC nanoparticles containing graphene floating bands (SiC@G) were prepared by a liquid-phase laser irradiation technique, and SiC@G nanoparticles with high dispersivity were incorporated into an Al2O3 matrix. An Al2O3-based composite ceramic tool was prepared by spark plasma sintering (SPS), and the effects of SiC@G nanoparticles on the mechanical and cutting properties and microstructure of the materials were further investigated. Analysis of the cross-sectional morphology shows that SiC@G nanoparticles containing graphene floating bands were homogeneously dispersed in the composite, which resulted in tighter bonds between the Al2O3 particles. This particular core-shell structure increased the contact area between the graphene and the matrix due to the formation of a graphene 3D mesh by extrusion, which enhanced the difficulty of relative sliding of graphene. Second, this special core-shell structure also made the crack propagation path more tortuous, further increasing the energy consumed in the fracture process, which is conducive to improving the mechanical properties of ceramic tools. The addition of SiC@G nanoparticles improves the mechanical properties of Al2O3-based composite ceramic tools. The fracture toughness (7.2 Mpa·m1/2) and flexural strength (709 MPa) increased by 75.6% and 28.7%, respectively. Cutting experiments with Al2O3/SiC/G composite ceramic tool and Al2O3/SiC@G composite ceramic tools on 40Cr hardened steel were performed. The results prove that the addition of SiC@G nanoparticles improves the cutting life by 18.1% and reduces the cutting force and friction coefficient by 6.3% and 14.8%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call