Abstract

Deteriorating air quality and diminishing fossil fuel reserves drive the demand for alternative fuels. Biodiesel from animal and plant sources appears promising, but it has drawbacks like lower thermal efficiency and higher fuel consumption. One solution is exploring Nano additive biodiesel for internal combustion engines to address these limitations. The present research focuses on Guizotia abyssinica (L.) (GA) crops and the synthesis of biofuels from the bioresource and the aluminium oxide (Al2O3) and titanium dioxide (TiO2) nanoparticles. During nanoparticle characterization in X-ray diffraction (XRD), the interplanar spacing for the most intense peaks of (222) and (101) in Al2O3 and TiO2 was observed to be 2.63 and 3.48, respectively. Scanning Electron Microscopy (SEM) confirmed the formation of Al2O3 and TiO2. In the experimental evaluation, a multi-fuel variable compression ratio (MFVCR) engine was used to evaluate the performance and TESTO350 for the emission analysis. Nano additive biodiesel achieved a peak cylinder pressure of 55.19 bar and reduced CO emissions by 9.78 % compared to other biodiesel blends. The inclusion of nano additives in biodiesel resulted in a maximum brake thermal efficiency of 32.99 % and a minimum brake-specific fuel consumption of 0.362 kg/kWh compared to other fuels in the study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call