Abstract
7SL RNA is an abundant cytoplasmic RNA which functions in protein secretion as a component of the signal recognition particle. Alu sequences are the most abundant family of human and rodent middle repetitive DNA sequences (reviewed in ref. 2). The primary structure of human 7SL RNA consists of an Alu sequence interrupted by a 155-base pair (bp) sequence that is unique to 7SL RNA. In order to obtain information about the evolution of the Alu domain of 7SL RNA, we have determined the nucleotide sequence of a cDNA copy of Xenopus laevis 7SL RNA and of the 7SL RNA gene of Drosophila melanogaster. We find that the Xenopus sequence is 87% homologous with its human counterpart and the Drosophila 7SL RNA is 64% homologous to both the human and amphibian molecules. Despite the evolutionary distance between the species, significant blocks of homology to both the Alu and 7SL-specific portions of mammalian 7SL RNA can be found in the insect sequence. These results clearly demonstrate that the Alu sequence in 7SL RNA appeared in evolution before the mammalian radiation. We suggest that mammalian Alu sequences were derived from 7SL RNA (or DNA) by a deletion of the central 7SL-specific sequence, and are therefore processed 7SL RNA genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.