Abstract
Previous studies have shown that gene re-arrangements play a significant role in tumorigenesis. Gene re-arrangements involving the human multidrug resistance-1 (MDR1) gene have been identified as a mechanism for MDR1 over-expression in human malignant cells. In 2 multidrug-resistant human cancer sublines with high levels of MDR1 and P-glycoprotein (MCF7/TX400 and S48-3s/Adr10), hybrid mRNAs containing sequences from MDR1 and an unrelated gene have previously been identified. To characterize and determine the site of the re-arrangements resulting in generation of hybrid mRNAs, we first constructed a lambda phage library extending over a contiguous genomic region of 100 kb and containing the region upstream of MDR1. In MCF7/TX400 cells, homologous recombination was observed involving an Alu repeat 80 kb upstream of the MDR1 gene, with a 79 bp intra-Alu deletion flanked by chi-like sequences at the re-arrangement junction. By contrast, non-homologous recombination was observed in S48-3s/Adr10 cells with Alu repeats near the junction sequence. While the specific features of the breakpoints appear to be different, Alu repeats might be involved in both gene re-arrangements. The gene re-arrangements at or near the Alu sequence should be regarded as potentially involved in the transcriptional activation of human MDR1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.