Abstract

Although a pilot national live-donor kidney exchange program was recently launched in the US, the kidney shortage is increasing faster than ever. A new solution paradigm is able to incorporate compatible pairs in exchange. In this paper, we consider an exchange framework that has both compatible and incompatible pairs, and patients are indifferent over compatible pairs. Only two-way exchanges are permitted because of institutional constraints. We explore the structure of Pareto-efficient matchings in this framework. We show that under Pareto-efficient matchings, the same number of patients receive transplants, and it is possible to construct Pareto-efficient matchings that match the same incompatible pairs while matching the least number of compatible pairs. We extend the celebrated Gallai–Edmonds Decomposition in the combinatorial optimization literature to our new framework. We also conduct comparative static exercises on how this decomposition changes as new compatible pairs join the pool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.