Abstract

In this thesis, the development of an algorithm is presented. The algorithm determines the optimal cruise altitude for flying an aircraft at a constant speed and altitude on a given segment of the flight route. The optimization criteria corresponds to the minimization of the total costs, and, if possible, fuel consumption, associated with flying the cruise segment. The main objective is the development of a new algorithm, for a functionality of the FMS platform, that will display for the pilots the advisory information on a segment’s cruise altitude yielding the minimal cost. The algorithm, developed in MATLAB, is using a new method for computing the fuel burn, for the level flight cruise segments, based on the aircraft’s performance data. Three aircraft models were considered, one whose cruise modeling uses the center of gravity position, and two that do not use the center of gravity position. The algorithm was developed for normal flight conditions, and does not consider the costs associated with the initial and final changes of altitude, necessary to reach the optimal altitude and, at the end of the segment, needed to return to the initial cruise altitude. Algorithm performances were evaluated on three aircraft models – Airbus A310, Sukhoi RRJ and Lockheed L1011. The validation data were generated based on the information produced on a CMC Electronics – Esterline FMS platform that used an identical aircraft model, and performance data, for identical flight conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call