Abstract

BackgroundRumen microbiota in ruminants are vital for sustaining good rumen ecology, health, and productivity. Currently, limited information is available regarding the response of yaks (Bos grunniens) to fluctuating environments, especially the rumen microbiome. To address this, we investigated the diet, rumen bacterial community, and volatile fatty acids (VFA) of rumen fluid of yaks raised in the great Qinghai-Tibet plateau (QTP) at 2800 (low altitude, L), 3700 (middle altitude, M), and 4700 m (high altitude, H) above sea level.ResultsThe results showed that despite a partial diet overlap, H yaks harbored higher fibrous fractious contents than the M and L grazing yaks. Bacteria including Christensenellaceae_R-7_group, Ruminococcus_1, Romboutsia, Alloprevotella, Eubacterium coprostanoligenes, Clostridium, Streptococcus, and Treponema were found to be enriched in the rumen of yaks grazing at H. They also showed higher rumen microbial diversity and total VFA concentrations than those shown by yaks at M and L. Principal coordinates analysis (PCoA) on weighted UniFrac distances revealed that the bacterial community structure of rumen differed between the three altitudes. Moreover, Tax4fun metagenome estimation revealed that microbial genes associated with energy requirement and carbohydrate metabolic fate were overexpressed in the rumen microbiota of H yaks.ConclusionsCollectively, our results revealed that H yaks had a stronger herbage fermenting ability via rumen microbial fermentation. Their enhanced ability of utilizing herbage may be partly owing to a microbiota adaptation for more energy requirements in the harsh H environment, such as lower temperature and the risk of hypoxia.

Highlights

  • Rumen microbiota in ruminants are vital for sustaining good rumen ecology, health, and productivity

  • We addressed three critical questions: (1) Do the yaks have different rumen microbiota diversity and fermentation ability (VFA profiles) at different elevations? (2) Is there a link between rumen microbiota and volatile fatty acids (VFA)? (3) Does rumen microbiota composition and function covary at and due to different elevations? Our results are significant for studying microbiota adaptation to higher energy demands of the associated hosts under harsh conditions such as cold climate and hypoxic high-altitude environmental conditions

  • There were no significant differences in the contents of dry matter (DM), ether extract (EE), crude protein (CP), and organic matter (OM) (P > 0.05) in herbage from the three altitudes

Read more

Summary

Introduction

Rumen microbiota in ruminants are vital for sustaining good rumen ecology, health, and productivity. The rumen is a complicated microbial ecosystem harboring compartment, hosting abundant bacteria, protozoa, and fungi, that play vital roles in ruminants [1]. Ruminants depend on their rumen microbes for degradation of structural carbohydrates (cellulose, hemicellulose, and lignin) in herbage, and synthesis of rumen volatile fatty acids (VFA) and microbial proteins synthesis as energy and protein sources [2]. Yaks play an essential function in the alpine ecosystem in various ways, including enhancing plant diversity through creation of microhabitats, providing a livelihood for local herdsmen, enhancing soil structure, and promoting the material circulation and energy flow in the ecosystem [10]. This makes investigations more complicated compared to non-host environmental microbial communities

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call