Abstract

Plant response to changing air pollution is a function of various factors including meteorology, type of pollutants, plant species, soil chemistry, and geography. However, the impact of altitude on plant behavior has received little attention to date. A study was therefore conducted to evaluate the impact of altitude on the air pollution tolerance index (APTI), heavy metal accumulation, and deposition in plant species. The results favor the hypothesis of a definite impact of altitude on biochemical and heavy metal accumulation in plants. While a significant decline (p < 0.05) in the relative water content (RWC), APTI, and heavy metal accumulation with increasing altitude was evident in the studied plant species, the behavior of ascorbic acid, leaf extract pH, chlorophyll content, and the particle heavy metal deposition was erratic and did not display any statistically significant differences. The metal accumulation index was in the following order: Ni > Zn > Cu > Pb > Cd > Co. Similarly, the particle heavy metal deposition on the leaf surface (µg/cm2) displayed significant species variability (p < 0.05) and was in the order: Cu (0.303) > Pb (0.301) > Ni (0.269) > Zn (0.241) > Cd (0.044) > Co (0.025). The accumulated heavy metal and RWC showcased a significant positive correlation with the APTI, suggesting the dominant role of RWC in the plant's tolerance against air pollution in an altitudinal gradient. Future studies on the role of micrometeorological conditions in altering APTI may be fruitful in ascertaining these postulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call