Abstract

While there are challenges in tuning the properties of graphene (surface wettability, work function alignment, and carrier transport) for realizing an efficient graphene cathode in organic solar cells (OSCs), we propose and demonstrate using an Al-TiO₂ composite to modify single-layer graphene as an efficient cathode for OSCs. To unveil the contributions of the composite in addressing the aforementioned challenges, the evaporated aluminum nanoclusters in the composite benefit the graphene cathode by simultaneously achieving two roles of improving its surface wettability for subsequent TiO₂ deposition and reducing its work function to offer better energy alignment. To address challenges related to charge transport, solution-processed TiO₂ with excellent electron transport can offer charge extraction enhancement to the graphene cathode, which is essential to efficient devices. However, it is a well-known issue for methods such as spin-coating to produce uniform films on the initially hydrophobic graphene, even with improved wettability. The undesirable morphology of TiO₂ by such methods considerably inhibits its effectiveness in enhancing charge extraction. We propose a self-assembly method to deposit the solution-processed TiO₂ on the Al-covered graphene for forming the Al-TiO₂ composite. Compared with spin-coating, the self-assembly method is found to achieve more uniform coating on the graphene surface, with highly controllable thickness. Consequently, the graphene cathode modified with the Al-TiO₂ composite in inverted OSCs gives rise to enhanced power conversion efficiency of 2.58%, which is 2-fold of the previously best reported efficiency (1.27%) for graphene cathode OSCs, reaching ∼75% performance of control devices using indium tin oxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.