Abstract
This paper presents the bootstrap percentile interval and the Bayesian credible interval as alternatives to the classical frequentist confidence interval for analysis of zero-inflated data. The indicated methods were applied to soybean downy mildew severity data obtained by stratified sampling in two municipalities in the state of São Paulo: Estiva Gerbi and Piracicaba. The amplitudes of the frequentist and bootstrap percentile confidence intervals were similar. For the Bayesian approach, the credible intervals of the posterior predictive distribution were considered using the zero-inflated beta distribution as likelihood. The credible intervals showed a wider range and included values in the upper bounds of the intervals greater than those observed in the data. We conclude that Bayesian inference is more complex, but allows incorporation of prior information regarding regional and seasonal aspects, contributing to better disease management in the field. When this information is not known, nonparametric bootstrap resampling is a simple alternative to construct intervals for zero-inflated data without assuming the distribution function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.