Abstract

Winter legume cover crops or double-cropping in high N-fertilizer maize-based sprinkler-irrigated systems enhance agroecosystem diversity and potentially increase yields. However, the effects on direct N2O emissions and global warming potential (GWP) have not been fully established. For two years, in the Ebro Valley (Spain), four maize-based systems consisted of: long-season maize (Zea mays) with winter fallow period (F-LSM) the reference system; or after a leguminous cover crop (common vetch, Vicia sativa) (CC-LSM); and short-season maize after a cereal crop (barley, Hordeum vulgare) (B-SSM) or after a leguminous crop (pea, Pisum sativum) (P-SSM). They were assessed in terms of productivity, direct greenhouse gasses emissions (GHG: N2O, CH4, CO2), and global warming potential (GWP).Direct GHG emissions were measured using the static chamber technique, while soil parameters were monitored. Crop yields and nitrogen uptake were also quantified. GHG emissions linked to management and inputs were calculated to obtain GWP and greenhouse gas intensity (GHGI).The most productive system (B-SSM) obtained the highest direct (79 %, 35 %, and 30 % higher than the F-LSM, P-SSM, and CC-SSM, respectively) and scaled N2O emissions. The P-SSM system had similar N-uptake-scaled emissions to the monocropping (MC) systems. Irrigation, fertilizer, and farm operations accounted for the 26 %, 31 %, and 27 % of the total indirect emissions, respectively. Fertilizer production-related emissions in B-SSM and F-LSM systems were 172 % and 45 % higher than the average emissions in the systems with legumes (461 kg CO2eq. ha−1). Diversified systems lead to slightly higher GHGI values than the reference system (F-LSM). However, no differences were found between the F-LSM and P-SSM systems in GWP (4521 and 5512 kg CO2-eq. ha−1, respectively) or GHGI (144 and 158 kg CO2-eq. ha−1, respectively).The P-SSM system may be a potential alternative for increasing the diversification of maize-based irrigated agrosystems without increasing GHG emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call