Abstract

Procoagulant full-length tissue factor (flTF) and its minimally coagulant alternatively spliced isoform (asTF), promote breast cancer (BrCa) progression via different mechanisms. We previously showed that flTF and asTF are expressed by BrCa cells, resulting in autoregulation in a cancer milieu. BrCa cells often express hormone receptors such as the estrogen receptor (ER), leading to the formation of hormone-regulated cell populations. To investigate whether TF isoform-specific and ER-dependent pathways interact in BrCa. Tissue factor isoform-regulated gene sets were assessed using ingenuity pathway analysis. Tissues from a cohort of BrCa patients were divided into ER-positive and ER-negative groups. Associations between TF isoform levels and tumor characteristics were analyzed in these groups. BrCa cells expressing TF isoforms were assessed for proliferation, migration and invivo growth in the presence or absence of estradiol. Ingenuity pathway analysis pointed to similarities between ER- and TF-induced gene expression profiles. In BrCa tissue specimens, asTF expression was associated with grade and stage in ER-positive but not in ER-negative tumors. flTF was only associated with grade in ER-positive tumors. In MCF-7 cells, asTF accelerated proliferation in the presence of estradiol in a β1 integrin-dependent manner. No synergy between asTF and the ER pathway was observed in a migration assay. Estradiol accelerated the growth of asTF-expressing tumors but not control tumors invivo in an orthotopic setting. Tissue factor isoform and estrogen signaling share downstream targets in BrCa; the concomitant presence of asTF and estrogen signaling is required to promote BrCa cell proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.